大家都知道学习是需要方法的,可是具体这个方法是什么,就不知道了。一个偷懒的或者无奈的回答是:无一定之规。我们看到很多学习很好的学生并不是把时间基本上都花在学习上。我自己当学生的时候就是这样的一个人。可是,当我们思考,或者被问,到底什么学习方法使我们达到了这个效果的时候,我们通常说不出一个所以然来。我记得我自己曾经给出的答案是多想,随便想,不限制地想。尽管现在我已经知道这个答案其实有道理(这个道理在本文中会用概念地图理解型学习来解释),但是,听者和问者能从这个答案里面悟出多少就很难说了。我们还有这样的一些经验或者体会:有些人当她们对一个领域熟悉到一定程度之后,她们可以“灵机一动地”或者“深思熟虑地”建立这个领域与其他领域的联系;还有的人,他们可以提出和解决非常深刻非常困难的问题,而且往往这样的解决问题的方法可以成为解决其他问题而不仅仅是原来的问题的基础。我们往往把这样的人称作创造力很强的人。如果我们问这样的人,什么提升了其创造性,能够说出一个道理来的也不多。我自己也应该算这样的人,常常会把不同领域的东西联系在一起,也常常思考一门学科里面最深刻的几个问题中的一两个,尽管已经解答的还不是很多。如果问我,事实上我也确实被问过,我的答案也基本上是多想,随便想,不限制地想。可以算是略有小成的物理学家汤超——沙堆模型的原创者之一[1]——也被问过这个问题。他经过几分钟的思考之后,以开玩笑的方式,给出的答案是,多看、多想、多聊。尽管现在我知道这个答案很有道理,但是听者和问者能够从这个答案中悟出真知的人也是少数。所以,高效率的学习和思考都是需要而且有方法的。这个道理大家都明白都同意。可是,方法是什么不知道。
高效率的教学也是需要而且有方法的。教学就是为了让学生学会学习和思考,既然学习和思考是需要而且有方法的,那么教学自然也是需要而且有方法的。可是这个问题比前者还要难,可供参考的方法还要少。我们大概都听说过,“教学是一门艺术”。凡是艺术就意味着能够一般化程序化的东西少,个性化的东西多。很多有名的教师,例如Richard Feynman ——费曼物理学讲义的作者、天才物理学家,Leonard Susskind——超弦理论的创立者之一、一系列斯坦福大学理论物理公开课的主讲人,Michael Sandel——哈佛大学“Justice(正义)”公开课的主讲人,Ben Polak——耶鲁大学“Game Theory(博弈论)”公开课的主讲人,都不是学教育出身,而是从自身的研究工作和研究领域出发体会出来的。好吧,既然如此,我们有没有一些方法能够提高教学的效率呢?有,但是,一般性的方法很少很少,不过,我们即将介绍的概念地图教学方法就是一个。
学科大图景
我们这里要介绍的概念地图理解型学习是从“低能近似”的层次的研究中——“低能近似”不太好听,我们给取它一个名字, 唯象研究,就是基本上从现象出发的,基本原理还不太清楚的研究——提出来的有效的学习和教学方法。除了这个提高学习和教学的效率的目标,更具体地,这个方法主要解决什么问题呢?解决学什么、怎么学,教什么、怎么教的问题。千万不要认为学什么、教什么的问题是一个平庸的问题。当然,如果你认为什么都应该学应该教,学生就是应该尽可能地多学点,那么你不是本文的读者。学生的总的时间是有限的,学习文化知识的时间更应该是有限的。学生的时间还需要花很大一部分来接触不同的事物,了解和欣赏自然界,交朋友,发呆,爬树,钓鱼,游戏,运动,跟家人共度家庭时间,等等等等。花在任何一本不值得的书,或者一门不值得上的课,一个不值得学的知识点上的时间就意味着减少了本来可以用来增加生活体验和生活乐趣的时间。尤其是当老师的我们,每一次我们没有选择最合适的内容来教的时候,我们都在强制学生跟我们一起浪费时间,而且是很多的学生,并且是不得不跟我们一起浪费。因此,仔细地审视每一项教学内容的必要性合理性是老师一定要去做的事情。当然,如果你是那种拿过一本书来就教,现在不主动思考教什么的问题,将来也不打算思考的老师,那么,你不是本文的读者。
那么,学什么、教什么?举个不太恰当的例子,而且正因为不恰当,反而更深刻。很多家长在孩子们很小的时候就教孩子们算加减法。很多孩子们对于加减法的认识是记忆性的,而不明白加减法的含义。也就是说,孩子们在开始的时候,不知道 1 + 1 = 2 意味着“一个单位的某种东西加上另外一个同样的单位的同样的东西,就是两个单位的同样的东西”这个含义,但是已经能够回答大人们问的问题,“某某, 1 + 1 等于几呀?”。某些家长还为此偷偷地高兴很多天。我现在要写下来的论断是:如果仅仅考虑加减法本身,除了为了明白加减法的含义需要一定量的计算练习,孩子们永远不应该学习加减法的计算。任何加减法,只要孩子们已经能够把实际问题转化成加减法的问题,那么学习的任务已经完成了。当然,为了熟练地在实际问题和数学表达式之间做转换,一定量的练习是必要的。但是,数学绝对不是做算术运算,这些运算的事完全可以交给计算器。同样地,所有的微积分也不要学生去熟练去记忆,只需要学会把实际问题转化成微积分的表达式。转化完成之后,我们有 SageMath[2], Maple[3]之类的专门的工具来完成它。所以,为了算术而学算术,为了微积分而学微积分,可以休矣。
那么,数学到底应该学什么教什么,算术和微积分的运算,需要熟练吗?需要,但是完全是因为其他原因。在数学上有一定造诣的读者会明白,因式分解是重要的思考方法,很多困难的问题可以用因式分解的思路变得更简单。要做好因式分解,需要对整数的加减乘除具有很好的感觉。熟悉算术运算就是为了培养这个感觉。变量替换和模块化在分析很多复杂的问题中非常重要,足够的微积分运算的训练可以得到一双敏锐的眼睛,提示你做合适的变量替换和把问题模块化。所以,这两个不太合适的例子很好,我很喜欢。也就是说,一个东西值不值得学,值不值得教,除了考虑学生和老师作为个体的兴趣(这个我们不管,有的人就是喜欢做一本百科全书,喜欢去挑战王小丫、李咏、汉字英雄、我爱记歌词,这是他们的自由。对了,这样的人也不是本文的读者。),最主要的是看学了这个东西可以用来理解或者创造性地运用哪些其他的东西或者解决什么样的问题,看这个东西在整个学科里面的地位,体现了这个学科的学科大图景的哪些方面。当然,我这里假设我们的教学的终极的目标,是培养一个个探索这个世界的人,不管是这个世界的人类行为的还是自然行为的方面。所以,我隐含了我所谈的培养的对象实际上是类似于科学家、社会科学研究者、领导者的人,或者象科学家、社会科学研究者、领导者一样思考问题的人。
回到我们的主题,在学科教学、学校教学的层面,学什么、教什么是个大问题。那么如何确定学什么、教什么呢?我们说要看一个内容在整个知识框架或者说学科大图景中的地位。那么,如何确定一个内容在整个知识框架或者说学科大图景中的地位呢?要依靠概念地图。如何运用概念地图来确定一个内容在整个知识框架或者说学科大图景中的地位呢?这个我们将来再展开讨论。在那之前,我们一定要看见,随着技术的进步,电子终端随处可见,搜索引擎越来越准确,人们对于记忆性的知识本身的需求越来越少,对于成为一个知识渊博的人的需求越来越小,同时创造性地运用和创造知识的需求越来越高。而理解知识是创造性地运用和创造知识的基础。我们学习和教学中的内容应该越来越少地关注能够通过简单提问谷歌(Google) [4]或者 Siri[5]就能解决的问题,更多地关注提出以前没有人提出过的问题,回答以前没有人回答过的问题,用新的方式回答问题,给一个问题提供新的答案,关注如何促进人类文明的进步。
那么,提出问题、解决问题、创造知识、创造性地运用知识、理解知识,靠什么?靠对一个或者多个学科的学科大图景的理解和把握。也就是,靠明白和体会到这个学科的研究者的典型思维方式和典型分析方法,靠了解这个学科的研究者大概研究什么典型对象、这些典型对象的什么典型问题,靠了解了典型思维方式、典型分析方法、典型对象、典型问题之后,体会到这个学科和世界的关系和其他学科的关系。于是,有一天当你面对相关的对象的相关的问题的时候,你知道把问题表述成相关学科的问题,用相关学科的思维方式和分析方法来尝试解决这个问题,甚至通过解决这个问题发展新的思维方式和分析方法。